Chapter 1

Introduction

Early Calculation

his chapter covers many different aspects of the history of

calculation, describing the first steps in numeration and
continuing through some of the nineteenth- and twentieth-century
developments of mechanical calculating machinery. It is quite
impossible to make this story completely chronological because of
many different overlapping developments; however, an effort has
been made to show the broad flow of historical events in the
approximate order in which they occurred. Some topics, for example
the contributions of the nineteenth-century British mathematician
Charles Babbage, are left to be described in other chapters because
they logically belong to a different line of development than that
described here.

The main emphasis in this chapter is on the historical
development of mechanical aids to calculation. By the early 1600s
the progress of calculation takes two different routes: the first is based
on the mathematical development of logarithms and leads into a
discussion of John Napier, Napier’s bones, logarithms, and slide
rules; the second is more of a mechanical than an intellectual
achievement and leads into the early development of calculating
machinery, finally culminating with the very sophisticated desk-top
machines of the early twentieth century.
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Numeration

Counting

Wc will never know when or how humans first developed the
ability to count. The process does not leave any physical
evidence behind for archaeologists to find. What we do know is that
the process is extremely ancient. Any of the so-called primitive
peoples that have been studied have all had a highly developed sense
of number and, to at least some degree, an ability to represent numbers
in both words and symbols.

Of course the very earliest civilizations would not have had the
same need for a sophisticated number system, or the arithmetic that
goes with it, as we do today. In fact, the general level of numerical
knowledge that we now take for granted is a fairly recent
development for the common individual. Some evidence of this can
be found in that, prior to the eleventh century, British law stated in
order for a man to be considered as a creditable witness in court, he
had to be able to count up to nine. To apply such a criterion today
would be ridiculous.

Once humans had developed the ability to count, it must have
become necessary to have a method of recording numbers.
Elementary situations do not require any sophisticated numeral
system, just an ability to reconstruct the final figure at some later date.
A typical instance would be the shepherd who puts one pebble in a
bag for every sheep he lets out of the pen in the morning and removes
one for every sheep herded back at night. If pebbles are left over after
all the sheep are back in the pen, he knows that he has to go back and
look for the strays.

Written Number Systems and Arithmetic

umanity’s first attempt at numerical notation was likely a

simple pictorial system in which five cows would be drawn to
represent five cattle or, with a slight generalization, seven tents might
represent seven family groups. This pictorial stage is of very little
interest from the point of view of the development of any arithmetic
abilities, which did not usually arise until various civilizations had
developed reasonably sophisticated systems of numerical notation.
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The physical evidence we have, at the moment, seems to indicate that
several different groups in different parts of the world had reached
this stage by about 3000 B.C.

Once a culture had reached the point at which semipermanent
recording of numerical information was necessary, the actual system
that they developed appears to have been dependent on such factors
as the type of writing materials available, the base of the number
system being used, and cultural factors within the group. These
cultural factors eventually dictated which of the two major notational
systems, the additive or the positional, was adopted.

The additive notational system uses one distinct symbol to
represent each different unit in the number base, this symbol being
repeated as often as necessary to indicate the magnitude of the
number being written. The classic example of an additive system is
the one developed by the ancient Egyptians; however, for purposes
of illustration, the Old Roman Numeral system will be much more
familiar.

The Modern Roman Numeral system, which uses the subtractive
forms of IV for 4 and IX for 9, is a development out of the Old Roman
Numeral system, which, although it was seen as early as A.D. 130,
did not become popular until about A.D. 1600. In the Old Roman
system it was possible to express any number less than 5,000 by a
sequence of symbols in which no individual sign needed to be
repeated more than four times. For example, the number 3,745 would
be represented as MMMDCCXXXXYV. It was the custom to write
down the symbols in decreasing order of their magnitude (M = 1000,
D =500,C=100, X =10, V=35, I=1), but this was not necessary.
The same number could have been represented as
CXXCXXMMVMD, but it never was because of the obvious ease of
reading the number when the symbols are written in the order of
descending value.

The pure additive system of notation is quite easy to use for
simple calculations, even though it does not appear so at first glance.
Addition involves the two step process of simply writing down the
individual symbols from each number, then collecting together the
sequences of smaller valued symbols to make larger valued ones so
that the number regains its canonical form. For example:

2319 = MMCCCX VI
+821 = DCCCXX 1
3140 = MMDCCCCCCXXXVIII
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The second step now takes over and, because IIlll = V, VV = X|
CCCCC = D, and DD = M, the final result is written as
MMMCXXXX.

Multiplication, although slow, is not really difficult and only
involves remembering multiples of 5 and 10. For example:

28 = XXVII
x12 = Xl
336
XXVII xI = XXVIII
XXVII xI = XXVII
XXVIII x X = CCLXXX
CCLXXX XXX VVIIIIT

which would be written as CCCXXVIL

The operations of division and subtraction are a little more
cumbersome; however, they were aided by standard doubling and
halving operations (as was multiplication) which are no longer in use
today. These techniques of "duplation” and "mediation" were actually
developed from similar methods used by the Egyptians.

Although more cumbersome than systems of positional notation,
the additive systems are not without their merits, and computation is
not difficult once the rules are mastered. The modification of such a
number system to include subtractive elements, such as the IV=4 or
IX =9 of the Modern Roman system, tend to make matters very much
more difficult as far as arithmetic is concerned, but this device is not
to be found at all in most examples of additive notation.

In positional number systems, like the one most of us use today,
the values being represented are denoted entirely by the position of
the symbol in the string of characters representing the number. Each
position corresponds to a certain power of the ‘base’ being used. The
base in most common use today is, of course, ten; the positions
representing units, tens, hundreds, thousands, etc. This means that it
is necessary to have a zero symbol to indicate an empty position. The
Chinese actually had a mechanism of using a positional number
system without a zero symbol, but this is very much the exception in
this type of notation.

The rules of calculation in a positional system are more complex
than those used with additive systems, and they usually require that
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The Abacus

the user memorize some form of multiplication table. Because of the
fact that everyone is familiar with the working of our own positional
number system, no attempt will be made to describe it in detail.

Introduction

he abacus is usually considered as being an object in the same

class as a child’s toy. This is quite the wrong impression, for in
the hands of a trained operator it is a powerful and sophisticated aid
to computation. Some appreciation of the power of the abacus can be
gained by noting the fact that in 1947 Kiyoshi Matsuzake of the
Japanese Ministry of Communications used a soroban (the Japanese
version of the abacus) to best Private Tom Wood of the United States
Army of Occupation, who used the most modern electrically driven
mechanical calculating machine, in a contest of speed and accuracy
in calculation. The contest consisted of simple addition and
subtraction problems, adding up long columns of many-digit
numbers, and multiplication of integers. Matsuzake clearly won in
four out of the five contests held, being only just beaten out by the
electrically driven calculator when doing the multiplication
problems. Although both men were highly skilled at their jobs, it
should be pointed out that it took Matsuzake several years of special
training in order to develop such a high order of skill at using the
soroban and it is unlikely that the average abacus user would ever
develop such speed and accuracy of operation. However, it does
illustrate that, at least in the hands of even a moderately skilled
operator, the abacus is far from being only an interesting toy.

The origin of the abacus is, literally, lost in the dusts of time. It
likely started out as pebbles being moved over lines drawn in the dirt.
Many cultures have used an abacus or counting board at some stage
in their development, but as in most European countries, once paper
and pencil methods were available the use of an abacus died out so
completely that it is hard to find any cultural memory of the abacus
being an important part of the arithmetic process. Today we tend to
think of the abacus as a Far Eastern device, only because that is one
of the few places where its use is still noticeable. In fact the abacus,
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in its present form, was only introduced into China in historical times
(about A.D. 1200) and was taken from there to Korea (about A.D.
1400) and then to Japan (about A.D. 1600).

Although we know that the abacus was in general use in Europe
until only about 250 years ago, we have remarkably little physical
evidence of its presence, particularly from the earliest Greek and
Roman times. What evidence we do have is usually in the form of
quotations from the ancient writers. For example, Demosthenes (circa
384 B.C.—circa 322 B.C.) wrote of the need to use pebbles for
calculations that were too difficult to do in your head. The use of the
abacus was not confined to the Old World. We know very little about
the various forms of abacus used by the Indians of North and South
America, but we do know that some of these groups used the device.
In 1590 a Jesuit, Joseph de Acosta, recorded some facts about the Inca
culture that would indicate the common use of an abacus:

In order to effect a very difficult computation for which an able
calculator would require pen and ink . . . these Indians make use of
their kernels of grain. They place one here, three somewhere else and
eight I know not where. They move one kernel here and three there
and the fact is that they are able to complete their computation without
making the smallest mistake. As a matter of fact, they are better at
calculating what each one is due to pay or give than we should be with
pen and ink.!

It would seem likely that a number of North American Indian
cultures were advanced enough to require some form of calculating
device to be in use but almost no records remain of anything even as
primitive as de Acosta’s description. It is possible that-the abacus was
being used by some groups but that very few Europeans were
concerned with recording anything except their own conquest of
these Indian cultures.

The European Abacus

Onc of the few interesting bits of physical evidence for the early
use of the table abacus comes from Greece. Itis an actual abacus
table, found on the island of Salamis (see Figure 1.1) just a few miles
off the Greek coast near Piraeus. The Salamis abacus is now broken
into two pieces, but was once a large marble slab about 5 feet long
and 2 feet 6 inches wide. There is no indication of when it might have
been made. From its size, it must have been used in some large public
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institution, perhaps as a bank or money changer’s table. We know
very little about how it may have been used except that it seems to
be designed for counters to be placed on or between the various lines
and the inscriptions appear to refer to numerical values and to certain
types of coins, such as drachmae, talents, and obols. It has been
speculated by many different people that the spaces between the five
separate lines at one end of the abacus are intended for calculations

involving fractions of the drachma.
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Figure 1.1. A drawing of the Salamas Abacus.
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The word abacus itself can be of some help in determining the
origins of the European version. The manipulation of pebbles in the
dust, or the use of a finger or stylus in fine dust or sand spread upon
a table, is known to have been used as an aid to calculation from very
early times. The Semitic word abagq (dust) is thought by many to be
the root of our modern word abacus. From the Semitic, the word
seems to have been adopted by the Greeks who used abax to denote
a flat surface or table upon which to draw their calculating lines. The
term then appears to have spread to the Romans who called their table
an abacus.

The term abacus has meant many different things during its
history. It has been applied to the simple dust table, or wax tablet,
which was generally used only as a substitute for pen and ink, as well
as to the various forms of table abacus and different wire and bead
arrangements used in the Far East. Because most early arithmetic was
done on the abacus, the term became synonymous with ‘arithmetic’
and we find such oddities as Leonardo of Pisa (Fibonacci) publishing
a book in 1202 called Liber Abaci (The Book of the Abacus), which
did not deal with the abacus at all but was designed to show how the
new Hindu-Arabic numerals could be used for calculation. In
Northern Europe, the phrase Rechnung auf der linien (calculating on
the lines) was in common use as a term meaning "to do arithmetic"
even long after the use of the abacus had been abandoned.

Several of our modern mathematical and commercial terms can
be traced to the early use of the table abacus. For example, the
Romans used small limestone pebbles, called calculi, for their abacus
counters; from this we take our modern words calculate and calculus.
A more modern example comes from the fact that in England the table
abacus was generally referred to as a counting board or simply as a
counter; of course every merchant would have a counter in his shop
upon which to place the goods being purchased and upon which the
account could be calculated.

By the thirteenth century the European table abacus had been
standardized into some variant of the form shown in the diagram
below. It consisted of a simple table, sometimes covered by a cloth,
upon which a number of lines were drawn in chalk or ink. The lines |
indicated the place value of the counters: the bottom line representing
units and each line upwards representing ten times the value of the
line below. Each space between the lines counted for five times that
of the line below it. No more than four counters could be placed on a
line and no more than one in any space. As soon as five counters
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appeared on a line, they were removed and one placed in the next
higher space; if two appeared in a space, they were removed and one
placed on the next higher line. When performing a computation on
the table abacus, any counters in a space were considered to be
grouped together with those on the line below: the use of the space
simply being a device to keep the eye from being confused by having
a large number of counters on one line. A cross or star was usually
placed next to the fourth (thousands) line to guide the eye, much as
we use a comma today to mark off groups of three digits. An example
of such an abacus is shown in Figure 1.2.

100,000 @
50,000 ®
10,000 ——0-0———
5,000 ®

1,000 *—0—0—

500

100 —0-0-0-0—

50 @
10
5
1 —eo-o

Figure 1.2. Table abacus set out to represent 287,452.
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Very few of these reckoning tables still exist. We know that they
once existed in great numbers for they are often mentioned in wills
and in household inventories, but, being a common object, nobody
thought to preserve them and only a handful are known still to exist
in various museums.

By the thirteeth century the counters had changed from the simple
pebbles used in earlier days into specially minted coinlike objects.
They first appeared about 1200 in Italy, but because it was there that
the use of Hindu-Arabic numerals first replaced the abacus, the
majority of the counters now known come from north of the Alps.
These coinlike counters were cast, thrown, or pushed on the abacus
table, thus they were generally known by some name associated with
this action. In France they were called jetons from the French verb
jeter (to throw), while in the Netherlands they were known as
werpgeld (thrown money). The older English usage of to cast up an
account or to cast a horoscope also illustrates the mode of operation
of a good abacist.

The counters, now commonly called jetons, are still to be found
in quite large numbers. This is not surprising when you realize that
the average numerate man would possess at least one set of copper
jetons while a merchant would likely have several. Individuals
possessing larger wealth or authority in the community would often
have their jetons struck in silver with their coat of arms or portraits
as the decoration.

The table abacus was used extensively in Britain even after
it had been abandoned by the majority of people on the
Continent. Illustrated in Figure 1.3 is one page from the first widely
used printed book on arithmetic in the English language. This book,
by Robert Recorde, was in print from 1542 right up to the start of the
1700s. It clearly shows (besides two errors in the illustration which
are left as a puzzle for the reader) that abacus arithmetic was being
taught to school children throughout this period.

The illustration for Recorde’s book clearly shows the usual
method of working a table abacus. For addition the two numbers were
simply set down side by side and the two groups of jetons were simply
moved together to accomplish the addition. Subtraction was slightly
more difficult but was easily accomplished especially when one was
able to literally "borrow" a jeton from a higher valued row in order
to accomplish the process. The methods for multiplication and
division were slightly different in various parts of Europe, but they
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Figure 1.3. A page from Robert Recorde’s book on arithmetic.

largely retained the doubling and halving processes that were started
by the Egyptians.

When the Hindu-Arabic numerals became firmly established in
Europe, the use of the table abacus died out completely. Its use was
forgotten to the extent that, when Napoleon invaded Russia in 1812,
his soldiers brought back examples of the Russian abacus as being a
curiosity of the area; this was at a time when their own great-
grandfathers had been daily users of the device in France.
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The Abacus in the Orient

he oriental wire and bead abacus appears to have its origin in

the Middle East some time during the early Middle Ages. A type
of abacus was developed that had several wires, each of which was
strung with ten beads. The Turks called this a coulba, the Armenians
a choreb, and the Russians, where it can still be seen in use today,
referred to it as a stchoty. This device almost certainly entered the Far
East through the standard trade routes of the day, the merchant class
being the first to adopt its use and then it slowly spread to the upper
levels of society. Its introduction may well have been helped by
international traders, such as Marco Polo, who had to travel through
several different countries on their way to China and thus had ample
opportunity to pick up different techniques along the way.

By the time it was firmly entrenched in Chinese society, about
the year A.D. 1300, the abacus consisted of an oblong frame of wood
with a bar running down its length, dividing the frame into two
compartments. Through this bar, at right angles to it, are usually
placed seventeen (but sometimes more) small dowels with seven
beads strung on each one, two on the upper side (heaven) of the bar
and five on the lower side (earth). Each bead in the lower section is
worth one unit, while those in the upper section are worth five. Thus,
it is possible to represent any number from 1 to 15 on the individual
dowels, although anything greater than 9 would naturally occur only
as an intermediate result in the process of a calculation. The Chinese
called this device a swan pan (counting board). The term swan was
derived from an older term meaning to "reckon with the rods"—a
reference to an earlier oriental technique of using short bamboo rods
to represent numbers on a flat calculating board (Figure 1.4).

b kb P9
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From China the concept of a wire and bead abacus spread to
Japan. Again it was likely the merchant class who actually spread the
idea, for there was a great deal of trade going on between the two
countries during the period A.D. 1400-1600. It is entirely possible that
the soroban was being used in Japan for at least one hundred years
before it was officially noticed by the ruling classes some time about
1600. At that time, the rulers of Japan were known to despise the
lower classes; any knowledge of business affairs, or even of the value
of the different coins, on the part of the nobility was considered a sign
of inferior breeding. The soroban generally resembles the swan pan,
except that there is only one bead in heaven and four in earth, and the
beads themselves have been changed in shape to provide a sharper
edge so that the operators fingers made better contact for flipping
them up and down the dowels (Figure 1.5). These changes meant that
the Japanese operator had to be a little more aware of how to work
quickly with additions or subtractions, which may require a carry, or
borrow, to or from the next column. It is, perhaps, with the soroban
that the abacus reached its ultimate development. As was pointed out
earlier, a well-trained soroban operator can compete with an
electrically driven, four-function, mechanical calculator as far as
speed and accuracy are concerned.

Figure 1.5. A Japanese soroban.

Figure 1.4. A Chinese swan pan.
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Calculating Aids
Napier and His Bones

he Scottish Reformation was just starting as John Napier

(Figure 1.6) was born in 1550 and the upheavals that it caused
added to the misery of both the nobles and the common folk alike. In
the middle of the sixteenth century, Scotland was torn apart by both
political and religious strife, with war between the different groups
being a constant occurrence. The cultural level of the time is said to
have seldom risen above that of barbarous hospitality. Before
Napier’s time, Scotland had produced several men of note in the field
of literature but only one in science, the thirteenth-century
mathematician Michael Scott. With the study of academic subjects
being held in low regard, it is very surprising that some of the most
fundamental advances in mathematics and computation should have
come out of this environment.

Figure 1.6. John Napier (1550-1617).
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Napier was born near Edinburgh, but that is almost all we know
of his early life. His father was one of the first people to take up the
cause of the Protestant movement in Scotland and, presumably, he
influenced John from his earliest days to believe that the pope was
the sole bar to the salvation of all humanity. Certainly John held this
belief right up to the time he died in 1617.

Napier is best known for his invention of logarithms, but he spent
a large part of his life devising various other schemes for easing the
labor involved in doing arithmetic. One of the best known of these
devices is his Rabdologia, or as they are more commonly known
Napier’s Bones. The name bones arose from the fact that the better
quality sets were constructed from horn, bone, or ivory. Various
authors have preferred to call them "numbering rods,” "multiplying
rulers," or even "speaking rods," but the name bones just refused to
to die out. Today they are usually considered a mere curiosity.

Napier did not at first consider this invention worthy of
publication; however, several friends pressed him to write it up, if
only to avoid others claiming it as their own. His descriptions
appeared in 1617, the year of his death and three years after the
publication of his description of logarithms, in a small book entitled
Rabdologia.

The idea for the bones undoubtedly came from the Gelosia
method of doing multiplication. This method is known to be very old;
it likely developed in India and there are records of its use in Arabic,
Persian, and Chinese societies from the late Middle Ages. The method
was introduced into Italy sometime in the fourteenth century, where
it obtained its name from its similarity to a common form of Italian
window grating. The method consists of writing down a matrixlike
grid, placing one digit of the multiplicand at the head of each column
and one digit of the multiplier beside each row, the product of each
row and column digit is then entered in the appropriate box of the
matrix—the tens digit above the diagonal and the units digit below. -
The final product is obtained by starting in the lower right-hand
corner and adding up the digits in each diagonal with any carry digits
being considered as part of the next diagonal. Figure 1.7 illustrates
the Gelosia method, showing 456 multiplied by 128 with the product
(058368) being read off starting from the upper left-hand corner.

Napier’s bones are simply a collection of strips of all possible
columns of this Gelosia table as is shown in Figure 1.8. To perform
the multiplication of 456 by 128 one would select the strips headed
4, 5, and 6, place them side by side, read off the partial products of
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456 times 1, 456 times 2 and 456 times 8 (by adding up the digits in
each parallelogram to obtain each digit of the partial product), and
then add together the partial products. Division was aided by the
bones in that multiples of the divisor could be easily determined,
saving time that would normally be spent in trial multiplication.

o112 ([3[[41|5]|6|]|7]|8]||9 J of
0 0 0 ) 0 ) 0 0 o o ) g4 T,
() f 2 3 /A 5 8 7 8 9
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ARV ARNARNARVANWARNARVZ ZARVZ 6 7193
AR AN AR VAR VAR AR AR A R 3/ 5 al16]a
ARV ARVZARNVARVARVARVZARVZ | |4 10 512515
ARV ARVARVARVARVARVARYARVARVZ 12 N
AR ARPA AR AN A R ARPAR P ¢/ 1a alaol 7
AR ARVARVARV ARV ARVARVARNVZ Vs 16 2164)8
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Figure 1.8. A modern set of Napier’s bones.
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The use of Napier’s bones spread rapidly, and, within a few years,
examples could be found in use from Europe to China. It is likely that
the two Jesuits, Gaspard Schott and Athanasius Kircher, were
partially responsible for their spread, particularly to China, where two
other Jesuits held office in the Peking Astronomical Board. Both
Schott and Kircher were German mathematicians during the time
when the Jesuit order was sending its technically trained members
around the world as missionaries for both the Christian faith and the
wonders of European technology.

Schott was aware of the physical problems involved in using a
standard set of arithmetic bones: such things as locating the correct
bones, having some convenient device to ensure they line up
correctly, etc. Several others had suggested incorporating Napier’s
bones into some form of mechanical assembly but none of them had
published any of their ideas, so Schott was left on his own to invent
a similar device. The result was a series of cylinders with a complete
set of Napier’s bones inscribed on each, the individual bones running
the length of the cylinder. Several of these cylinders were then
mounted in a box so they could be turned and any individual bone
could be examined through slits cut in the top of the box. Figure 1.9
shows a photograph of Schott’s device, the top of the box containing
an addition table to aid the operator.

Figure 1.9. Gaspard Schott’s version of Napier’s bones.
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Although it was an interesting attempt at making the bones easier
to use, the system proved to be a failure. The parallelograms
containing the digits to be added together span two adjacent bones
and the space required to mount the cylinders meant that these digits
were widely separated. This led to a greater tendency to make
mistakes and the device was soon abandoned. Schemes, similar to
Schott’s, were tried by different people in different countries (most
notably by Pierre Petit, the French mathematician and friend of
Pascal) but they all failed for the same reason.

The final chapter in the development of Napier’s bones as a
computational instrument took place in 1885 when, at the French
Association for the Advancement of Science meetings, Edouard
Lucas presented a problem on arithmetic that caught the attention of
Henri Genaille, a French civil engineer working for the railway.
Genaille, who was already quite well-known for his invention of
several different arithmetic aids, solved Lucas’s problem and, in the
process, devised a different form of Napier’s bones. These "rulers"
eliminated the need to carry digits from one column to the next when
reading off partial products (Figure 1.10). He demonstrated these
rulers to the association in 1891. Lucas gave these rulers enough
publicity that they became quite popular for a number of years.
Unfortunately he never lived to see their popularity grow, for he died,
aged 49, shortly after Genaille’s demonstration.

The rulers, a set of which are shown in Figure 1.10, are similar
in their use to a standard set of Napier’s bones. There is one ruler for
each digit from 0 to 9. Each ruler is divided into nine sections with
several digits inscribed in each section, and one or two arrows point

—1 to the left towards a particular digit in the next ruler. In order to find

0]3|2]7]1 || the product of 3271 by 4, the rulers for 03271 (note the need for
o474 [1] always having a leading zero ruler) are placed side by side. Starting
Nd‘s“‘ “Q? [ 2| with the fourth section of the right-most ruler, you select the digit at
111711595/ Y3/ | | the top of this section (4 in this case) and then simply follow the
oqolsl 1143 arrows towards the left, reading off the digits as you come to them
11fo{W7|A2|¥4| | 3| (the product being 13084 in the case shown in Figure 1.11).
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Figure 1.10. A set of the Genaille-Lucas rulers.
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Once the problem of eliminating the carry digits had been solved

by Genaille, the creation of a specific set of rulers for division was

of division rulers together with an example of how they could be used
to divide the number 6957 by 6.

multiplication ones except that the large arrows are replaced by a
multitude of smaller ones. Figures 1.12 and 1.13 show a complete set

quickly accomplished. The division rulers are similar to the
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Figure 1.12. A set of the Genaille-Lucas division rulers.
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Figure 1.13. Genaille-Lucas division rulers used to divide 6957 by 6.

Note that a special ruler (marked R ) must be placed on the right-
hand side of the set in order to determine the remainder, if any, of the
division operation. The division rulers are used in the opposite
direction from the multiplication ones. In order to divide the number
by 6, you start at the left hand side of the sixth section with the topmost
digit (1 in the case shown here) and proceed to the right, following
the arrows and reading off the digits as they are encountered (1159
with a remainder of 3).

In the era before the mechanical desk-top calculating machine
industry had been developed, these simple instruments were one of
the two main forms of computational assistance for anyone engaged
in scientific or business calculations more complex than elementary
addition and subtraction. The other main computational aid, like these
various forms of Napier’s bones, also began with some pioneering
work of John Napier and is discussed below.

Logarithms

any writers have suggested that the invention of logarithms

came like a bolt from the blue, with nothing leading up to
them. This is not exactly the case because, like almost every other
invention, examples can be found of parallel development by other
people. John Napier is always given the credit for logarithms because
these other developments were either left unpublished or, in some
cases, not recognized for what they were at the time.

The major computational problems of Napier’s time tended to
involve astronomy, navigation, and the casting of horoscopes, all of
which are interrelated. These problems led to a number of
sixteenth-century scientists devoting their time to the development
of trigonometry. About twenty-five years before Napier published his
description of logarithms, the problem of easing the workload when
multiplying two sines together was solved by the method of
prosthaphaeresis, which corresponds to the formula:

sin a x sin b = [cos(a - b) - cos(a + b)]/2
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Once it had been shown that a rather nasty multiplication could
be replaced by a few simple additions, subtractions, and an
elementary division by 2, it is entirely likely that this formula spurred
scientifically oriented individuals, including Napier, to search for
other methods to simplify the harder arithmetical operations. In fact
several other such formulae were developed during Napier’s time,
but only the method of prosthaphaeresis was of any real use, except
in special circumstances. We know that Napier knew of, and used,
the method of prosthaphaeresis, and it may well have influenced his
thinking because the first logarithms were not of numbers but were
logarithms of sines.

Another factor in the development of logarithms at this time was
that the properties of arithmetic and geometric series had been studied
extensively in the previous century. We now know that any numbers
in an arithmetic series are the logarithms of other numbers in a
geometric series, in some suitable base. For example, the following
series of numbers is geometric, with each number being two times
the previous one:

natural numbers 1 2 4 8 16 32 64 128 256 512 1024.

"And the series below is an arithmetic one whose values are the
corresponding base 2 logarithms:

logarithms 0123 45 6 7 8 9 10

It had long been known that if you take any two numbers in the
arithmetic progression, say 3 and 4, their sum, 7, would indicate the
position of the term in the geometric series that is the product of the
terms in the corresponding positions of the geometric series, e.g.,
3+4="7and 8 X 16 = 128 (the third times the fourth = the seventh).
This is starting to look very much like our own conception of
logarithms as being the powers to which some base number is raised,
a concept that was not understood in Napier’s time. Often the use of
a good form of notation will suggest some basic mathematical
principle. Our use of indices to indicate the power to which a number
is being raised seems to have an obvious connection with logarithms,
but without this form of notation, the connection is vague at best.

John Napier came at the idea of logarithms not by algebra and
indices but by way of geometry. When first thinking about this
subject, he used the term artificial number but later created the term
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logarithm from a Greek phrase meaning "ratio number." He decided
on this term because his logarithms were based on the concept of
points moving down lines in which the velocity of one point was
based on the ratio of the lengths of the line on either side of it.

We know almost nothing about how long Napier worked before
he felt that the idea of logarithms was sufficiently refined to be worthy
of publication, but in July of 1614 he published a small volume of
fifty-six pages of text and ninety pages of tables entitled Mirifici
Logarithmorum Canonis Descriptio. At best, it is translated as
Description of the Admirable Cannon (Table) of Logarithms. It was
common in those days to dedicate a book to a nobleman, often in the
hope that some patronage would result. Unfortunately Napier had the
bad luck to dedicate the Descriptio to the then Prince of Wales, who,
when he later became King Charles I, was beheaded by Cromwell.

The Descriptio was just that, a description of the cannon or table
of logarithms of sines, with the rules to be followed when using them
to perform multiplication, division, or the computation of roots and
powers. It contained a statement that, if these tables were accorded
the reception that Napier hoped, he would describe in some future
publication exactly how they were discovered and the methods used
to calculate them.

Our story now shifts to London, where one of the most famous
English mathematicians of the day, Henry Briggs (1561-1631), was
Professor of Geometry at Gresham College. By the early years of the
1600s his reputation had spread far enough that people like Johann
Kepler were consulting him on the properties of the ellipse. In the
later months of 1614 he obtained a copy of Napier’s Descriptio and,
by March of the following year wrote that

Napier, lord of Markinston, hath set my head and hands at work with
his new and admirable logarithms. I hope to see him this summer, if it
please God; for I never saw a book which pleased me better, and made
me more wonder.”

Briggs immediately began to popularize the concept of
logarithms in his lectures and even began to work on a modified
version of the tables. Several years later, in 1628, Briggs’s newly
calculated logarithms were published and he stated in the Latin
preface

That these logarithms differ from those which that illustrious man, the
Baron of Merchiston published in his Cannon Mirificus must not
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surprise you. For I myself, when expounding their doctrine publicly in
London to my auditors in Gresham College, remarked that it would be
much more convenient that O should be kept for the logarithm of the
whole sine.. . . . And concerning that matter I wrote immediately to the
author himself; and as soon as the season of the year and the vacation
of my public duties of instruction permitted I journeyed to Edinburgh,
where, being most hospitably received by him, I lingered for a whole
month.

What Briggs was suggesting was that the base of the logarithms
should be changed in order to make them easier to use. Napier had
evidently already seen the same thing, for as Briggs states:

But as we held discourse concerning this change in the system of
Logarithms, he said, that for a long time he had been sensible of the
same thing, and had been anxious to accomplish it, but that he had
published those he had already prepared, until he could construct tables
more convenient, if other weighty matters and his frail health would
suffer him so to do. But he conceived that the change ought to be
effected in this manner, that O should become the logarithm of unity,
and 10,000,000,000 that of the whole sine; which I could but admit
was by far the most convenient of all. So, rejecting those which I had
already prepared, I commenced, under his encouraging counsel, to
ponder seriously about the calculation of these tables; and in the
following summer I again took joumey to Edinburgh, where I
submitted to him the principal part of those tables which are here
published, and I was about to do the same even the third summer, had
it pleased God to spare him so long.4

The result of these changes was to create the common (base 10)
logarithms that we know today.

Henry Briggs never did finish his complete recalculation of
Napier’s logarithms. His tables, first published in 1624, contained the
logs of the numbers from 1 to 20,000 and from 90,000 to 100,000 all
calculated to 14 decimal places. There are 1161 errors in these
original tables, or just under 0.04 percent of the entries. Almost all of
them are simple errors of plus or minus 1 in the last decimal place;
however, several more are printing or copying errors such as the
printing of 3730 instead of 4730, but these are easily seen by users
of the tables because they stand out as being quite different from the
surrounding entries.

The concept of logarithms spread rapidly. In the same year as
Briggs’s tables appeared, Kepler published his first set of logarithms
and, a year later, Edmund Wingate published a set in Paris called
Arithmetique Logarithmique, which not only contained logarithms
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for the numbers from 1 to 1000, but also contained Edmund Gunter’s
newly calculated log sines and log tangents. The first complete set of
logarithms for the numbers from 1 to 101,000 was published by a
Dutch printer, Adrian Vlacq (circa 1600-1667), who was noted for
his ability at printing scientific works. He filled in the sections
missing from Briggs’s work, and published the whole table in 1628.
Vlacq’s tables were copied by many others in later years. Although
the publishers seldom acknowledged the source of the logarithms, it
was obvious where they came from because Vlacq’s original errors
were copied along with the correct logarithms. It was not until the
first quarter of the nineteenth century, when Charles Babbage
published his famous log tables, that correct sets of tables were
readily available.

Within twenty years of the time that Briggs’s tables first appeared,
the use of logarithms had spread worldwide. From being a limited
tool of great scientists like Kepler, they had become commonplace
in the schoolrooms of the civilized nations. Logarithms were used
extensively in all trades and professions that required calculations to
be done. Itis hard to imagine an invention that has helped the process
of computation more dramatically than has logarithms, the one
exception being the modern digital computer. During a conference
held in 1914 to celebrate the three hundredth anniversary of the
publication of the Descriptio, it was estimated that, of all the
calculation done in the previous three hundred years, the vast
majority had been done with the aid of logarithms.

The Slide Rule

Ithough logarithms were usable in the form in which Napier

invented them, it was the work of Henry Briggs that actually
made them easier to use. Briggs’s work naturally came to the notice
of Edmund Gunter, another professor at Gresham College, who was
a very practically minded teacher of astronomy and mathematics.
Gunter was primarily interested in the problems of astronomy,
navigation, and the construction of sun dials (the only reasonable
method of telling time in his day), all of whichrequired large amounts
of calculation involving trigonometric elements. Because of the
trigonometric content of these problems, the logarithm tables being
produced by Briggs were only of marginal help, so Gunter sat down
and completed the calculations for tables of the logarithms of sines
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and the logarithms of tangents for each minute of the quadrant. These
eight figure tables were published in 1620 and did much to relieve
the burden of calculation for finding one’s position at sea.

Gunter had some earlier experience in the development of
calculating instruments, having been one of the major figures in the
perfection of an instrument known as a sector. This device used a pair
of dividers to measure off different values inscribed along several
different linear scales. This experience soon led him to realize that
the process of adding together a pair of logarithms could be partially
automated by engraving a scale of logarithms on a piece of wood and
then using a pair of dividers to add together two values in much the
same way as he would have done when using a sector. Not only did
this method eliminate the mental work of addition, butit also removed
the necessity for the time-consuming process of looking up the
logarithms in a table. Gunter’s piece of wood soon became known as
Gunter’s Line of Numbers. Its use spread rapidly through England
and was quickly popularized on the Continent.

Gunter’s Line of Numbers consisted of a simple piece of wood,
about two feet long, (often the shaft of a cross-staff, a simple
navigational sighting instrument of the time) marked off with a
logarithmic scale, much the same way as one axis of a piece of
logarithmic graph paper is marked today. If he wished to multiply A
times B, he would open up a pair of dividers to the distance from 1
to A on his line of numbers, putting one point of the compass on the
point B, he would read off the number at which the other point sat.
The accuracy was limited to two or three digits, depending on the
care with which the instrument was used, but he had produced the
first logarithmic analog device able to multiply two numbers together.
Gunter would likely have added further refinements to his Line of
Numbers, for he was a master at the design and use of instruments,
but he died, aged 45, in 1626, before he was able to get enough time
from his other duties to return to the subject of logarithmic calculating
instruments. The next developments were left to a highly
individualistic clergyman named William Oughtred.

William Oughtred (circa 1574-1660) was one of the leading
mathematicians of his day. In 1604, after having taken a degree at
Cambridge, he was appointed as the rector of a small parish in Surrey
and, a few years later, was moved to the parish of Albury where he
lived for the rest of his life. He was the bane of his bishop, being the
subject of several complaints that he was a pitiful preacher because
he never studied anything other than mathematics (which tends to
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make for dull sermons). In the days before regular scientific journals,
information was published by sending it to several people who were
known to be in regular contact with other scientific men—Athanasius
Kircher, mentioned in connection with Napier’s bones, and Fr. Martin
Mersenne of Paris being the noted "postboxes” on the Continent,
while William Oughtred was one of the main distribution points for
England.

Oughtred was what we would now classify as a "pure"”
mathematician. Although he had a contempt for the computational
side of mathematics and considered the people who used
calculational instruments simply as "the doers of tricks," he was quite
familiar with the mathematical instruments then available. There are
records of his visiting Henry Briggs in 1610 and, while there, meeting
Edmund Gunter, and discussing mathematical instruments with him
at great length.

Oughtred noted that Gunter’s Line of Numbers required a pair of
dividers in order to measure off the lengths of logarithmic values
along the scale and quickly came up with the idea that, if he had two
such scales marked along the edges of the pieces of wood, he could
slide them relative to each other and thus do away with the need for
a pair of dividers. He also saw that if there were two disks, one slightly
smaller than the other, with a Line of Numbers engraved around the
edge of each, that they could be pinioned together at their centers and
rotated relative to one another to give the same effect as having
Gunter’s scale engraved on two bits of wood.

Because of his general disdain for mathematical instruments he
did not consider it worth his trouble, time, or effort to publish a
description of how he had improved Gunter’s Line of Numbers into
a practical slide rule. He did, however, describe the system to one of
his pupils, Richard Delamain, who was a teacher of mathematics
living and working in London. Delamain used Oughtred’s ideas quite
openly and based his teaching on various methods of instrumental
calculation.

In 1630 another of Oughtred’s pupils, William Forster, happened
to mention that in order to gain more accuracy when using Gunter’s
Line of Numbers he had resorted to using a scale six feet long and a
beam compass to measure off the lengths. Oughtred then showed him
how he could dispense with the beam compass by simply having two
of Gunter’s scales sliding over one another and also showed him a
circular disk with Gunter’s Line of Numbers marked off along the
edge with two indices, like a pair of dividers, extending from the



Computing Before Computers 30

center. The latter device, which Oughtred called his "Circles of
Proportion" (shown in Figure 1.14), he claimed to have invented
sometime in 1622. Forster was so impressed that he demanded
Oughtred publish a description of these inventions. Oughtred, still
under the impression that these "playthings" were not suitable objects
for the true mathematician, initially decided against it but, when
Delamain’s book appeared claiming them as his own invention,
Oughtred agreed to publish and even let Forster translate his Latin
into English so that the subject matter would be more widely
distributed than if it had remained in academic Latin.

Figure 1.14. Oughtred’s circles of proportion.
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The slide rule may have been developed and publicized in the
1630s and obtained its current form as a movable slide between two
other fixed blocks of wood about the middle 1650s, but very little use
was actually made of the device for almost two hundred years.
However several special slide rules were developed and became quite
popular; for example, a special slide rule was created for the use of
timber merchants, but the average educated man still clung to the
older sector as his main calculating instrument.

James Watt, better known for his work on the steam engine, was
responsible, at least in part, for one of the first really well-made slide
rules in the very late 1700s. He had spent the early part of his life as
an instrument maker at Glasgow University and so was familiar with
the techniques of engraving accurate scales upon instruments. After
he had set up a workshop for his steam engine business in Soho,
Birmingham, he discovered that he needed a device to let him perform
quick calculations concerning the volumes and power levels of
various engines. He devised a simple slide rule consisting of one
sliding piece between two fixed stocks (a design that had been in use
for a considerable period of time), carefully engraved the face with
four basic scales, and put tables of various constants on the back. His
rule was accurate enough that others soon requested copies for
themselves and Watt manufactured this so-called Soho Slide Rule for
several years. Even with the example of the Soho Slide Rule, the
general public seemed to ignore the power of the instrument. The
great English mathematician Augustus De Morgan, when writing an
article about the slide rule for the popular press in 1850, had to explain
that

for a few shillings most persons might put into their pockets some
hundresd times as much power of calculation as they have in their
heads.

The big breakthrough for the slide rule came in 1850, when a
nineteen-year-old French artillery officer, Amedee Mannheim
(1831-1906), designed a very simple slide rule much like that
manufactured by Watt, but added the movable double-sided cursor,
which we think of as such an integral part of the slide rule today. This
was not the first time that a movable cursor had been combined with
the simple sliding logarithmic scales, indeed the first time had been
almost two hundred years earlier on a slide rule designed for British
naval use, but it had been largely ignored until Mannheim reinvented
it. The cursor enabled fairly complex operations to be easily carried
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out on a simple, yet well-made, slide rule (Figure 1.15). Mannheim’s
design was adopted as the standard for the French artillery and, after
a few years, examples of it began to appear in other countries.
Mannheim survived his army service and was eventually appointed
Professor of Mathematics at the celebrated Ecole Polytechnique in
Paris, a post that did nothing to harm the evergrowing reputation of
his slide rule.

Figure 1.15. A modern version of the Mannheim slide rule.
Courtesy Smithsonian Institution.

Despite the fact that the Europeans began to adopt the "slip stick"
for many forms of quick calculation, it remained unpopular in North
America until 1888, when several examples of the Mannheim design
were imported. The North American market grew until, in 1895, there
was enough of a demand that the Mannheim rules were manufactured
in the United States. Even with a local source of manufacture, the
slide rule was still not totally accepted in North America until the
twentieth century. A survey in the journal Engineering News reported
that, as late as 1901, only one-half of the engineering schools in the
United States gave any attention at all to the use of the slide rule.

Once established, the progress of the slide rule was extremely
rapid. Many different forms were produced by several different major
manufacturers. The number of scales to be found on each instrument
increased to the point that eighteen or twenty different scales were
regularly engraved on the better quality instruments. Both sides of
the rule were used and the center, sliding portion could often be turned
over or completely replaced to provide even more combinations of
scales. Special slide rules incorporating such things as a scale of
atomic and molecular weights were created for chemists, and almost
any branch of science or engineering could boast that at least one
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manufacturer produced a slide rule designed for their particular use.
The accuracy of the slide rule was improved by several people who
modified the basic form so that the logarithmic scales were wrapped
around cylinders or into spirals. One device, known as Fuller’s Slide
Rule (Figure 1.16), was equivalent to a standard slide rule over
eighty-four feet long, yet could be easily held in the hand. It was
possible to work correctly to four figures, and sometimes even five,
with this particular unit.

Figure 1.16. Fuller’s slide rule.

The slide rule became a symbol that was often used to represent
the advancing technology of the twentieth century. It was a status
symbol for engineering students in the 1950s and 1960s and could
almost always be found clipped to their belt as a statement of their
chosen profession. It was, however, to be a transient symbol. The
development of the hand-held electronic calculator offered many
times the accuracy and convenience and the slide rule quickly sank
into obscurity. The demise was so rapid that itis possible to find many
examples of people who differ in age by only four or five years, one
of whom relied entirely on the slide rule for all calculations required
during university education, and the other, who took the same course
of studies, would not know how to use it to multiply two numbers
together. In a matter of a few years the major manufacturers of slide
rules had to either transfer their expertise to other products or face
bankruptcy.
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Mechanical Calculating Machines
Introduction

hough the various analog instruments were capable of

performing a great deal of useful arithmetic, the story of devices
that ultimately led to fully automatic computation really starts with
the invention and development of mechanical devices to perform the
four standard arithmetic functions. By devising a system in which
mechanical levers, gears, and wheels could replace the facilities of
human intellect, the early pioneers in these devices showed the way
towards the complete automation of the process of calculation.
Needless to say the early efforts were very crude not because the
inventors lacked the intelligence to construct better devices but
because the technical abilities of the workmen and the materials with
which they had to work were often not up to the demands put upon
them by these new machines. There was also the problem that whole
new techniques had to be invented in order to get mechanical devices
to produce some of the motions required of them when doing simple
arithmetic.

Some of the mechanical techniques became available about the
start of the seventeenth century, when, in response to a demand for
mechanical automata to amuse the rich, methods of producing
various motions in mechanical systems were developed. The
construction techniques were further advanced by the developing
trade of the clock maker—several early computing machines were
built by people trained in horological arts.

Most of the very early attempts at constructing a simple adding
machine relied on the human operator to adjust the mechanism
whenever a carry occurred from one digit to the next, much the same
way as was done when using a table abacus. There is no point in
detailing the development of this type of mechanism as they were all
of the most elementary kind and, in general, only constructed from
crude materials. The real development of mechanical computing
machinery only began when people attempted to incorporate
mechanisms to automatically deal with the problem of adding a carry
from one digit to the next.

It used to be thought that Blaise Pascal invented the first adding
machine to contain a carry mechanism; however, investigative work
in the 1950s and 1960s showed that that honor belongs to Wilhelm
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Schickard, who produced a machine about the year 1620, some
twenty years before Pascal’s attempt. It is quite possible that further
investigation will reveal yet an earlier device, but nothing now
suggests that any work of importance was done before Schickard.
There are many stories of people creating adding machines before
Schickard, some even as early as the year 1000. For example, the
monk Gerbert (later Pope Sylvester II) is reputed to have developed
some form of early calculating device, but it is almost certain that
these legends refer to things like Gerbert’s abacus rather than an
actual mechanical device. Even if people like Gerbert did produce
some form of mechanical mechanism, it is most unlikely that the
technology have allowed anything to be produced matching the
sophistication of the Schickard or Pascal machines.

The Machines of Wilhelm Schickard (1592-1635)

ilhelm Schickard was Professor of Hebrew, Oriental

languages, mathematics, astronomy, geography, and, in his
spare time, a protestant minister in the German town of Tiibingen
during the early 1600s. He has been compared to Leonardo da Vinci
in that they both had far-ranging interests and enquiring minds.
Besides being an excellent mathematician, with some of his
mathematical methods being in use until the later part of the
nineteenth century, he was a good painter, a good enough mechanic
to construct his own astronomical instruments, and a skilled enough
engraver to provide some of the copper plates used to illustrate
Kepler’s great work Harmonices Mundi.

Figure 1.17. Wilhelm Schickard (1592-1635).
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It is known that Schickard and Kepler not only knew each other
but that they also worked together several times during their lives. It
was one of these joint efforts that resulted in Schickard producing the
first workable mechanical adding machine. Kepler and Schickard are
known to have discussed John Napier’s invention of logarithms and
Napier’s bones as early as 1617. During one of Kepler’s visits to
Tiibingen he showed Schickard some of his new results and examples
of Napier’s bones and logarithms, which he had used in their
calculation. This seems to have inspired Schickard to consider the
design of a machine that would incorporate both a set of Napier’s
bones and a mechanism to add up the partial products they produced
in order to completely automate the process of finding the product of
two numbers.

On September 20, 1623, Schickard wrote to Kepler saying that

what you have done in a logistical way (i.e., by calculation), I have just
tried to do by mechanics. I have constructed a machine consisting of
eleven complete and six incomplete (actually "mutilated") sprocket
wheels which can calculate. You would burst out laughing if you were
present to see how it carries by itself from one column of tens to the
next or borrows from them during subtraction.®

Kepler must have written back asking for a copy of the machine for
himself because, on February 25, 1624, Schickard again wrote to
Kepler giving a careful description of the use of the machine together
with several drawings showing its construction. He also told Kepler
that a second machine, which was being made for his use, had been
accidentally destroyed when a fire leveled the house of a workman
Schickard had hired to do the final construction.

Their two letters, both of which were found in Kepler’s papers,
give evidence that Schickard actually constructed such a machine.
Unfortunately, the drawings of the machine had been lost and no one
had the slightest idea of what the machine looked like or how it
performed its arithmetic. Fortunately, some scholars, attempting to
put together a complete collection of Kepler’s works, were
investigating the library of the Pulkovo Observatory near Leningrad.
While searching through a copy of Kepler’s Rudolphine Tables they
found a slip of paper that had seemingly been used as a book mark.
It was this slip of paper that contained Schickard’s original drawings
of the machine. One of these sketches is shown in Figure 1.18. Little
detail can be seen, but with the hints given in the letters it became
possible to reconstruct the machine.
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In the stamp illustration, the upper part of the machine is set to
show the number 100722 being multiplied by 4. The result of this
multiplication is added to the accumulator using the lower portion of
the machine. The upper part is simply a set of Napier’s bones
(multiplication tables) drawn on cylinders in such a way that any
particular "bone" may be selected by turning the small dials (marked
a in Schickard’s drawing). Moving the horizontal slides exposes

Figure 1.19. A stamp produced to honor the 350th anniversary of the
invention of Schickard’s machine.
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different sections of the "bones" to show any single digit multiple of
the selected number, the fourth multiple is shown exposed in Figure
1.19. This result can then be added to the accumulator by turning the
large knobs (marked d ) and the results appear in the small windows
just above (marked ¢). The very bottom of the machine contains a
simple aide-memoire. By turning the small knobs (e) it was possible
to make any number appear through the little windows (f); this
avoided the necessity of having pen, ink, and paper handy to note
down any intermediate results for use at some later time in the
computation.

The mechanism used to effect a carry from one digit to the next
was very simple and reliable in operation. As shown in the drawing
(Figure 1.20), every time an accumulator wheel rotated through a
complete turn, a single tooth would catch in an intermediate wheel
and cause the next highest digit in the accumulator to be increased
by one. This simple-looking device presents problems to anyone
attempting to construct an adding machine based on this principle.
The major problem is created by the fact that the single tooth must
enter into the teeth of the intermediate wheel, rotate it 36 degrees

Figure 1.20. The Schickard carry mechanism.
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(one-tenth of a revolution), and exit from the teeth, all while only
rotating 36 degrees itself. The most elementary solution to this
problem consists of the intermediate wheel being, in effect, two
different gears, one with long and one with short teeth, together with
a spring loaded detente (much like the pointer used on the big wheel
of the gambling game generally known as the "crown and anchor"),
which would allow the gears to stop only in specific locations. It is
not known if Schickard used this exact mechanism, but it certainly
works well in the modern reproduction of his machine.

The major drawback of this type of carry mechanism is the fact
that the force used to effect the carry must come from the single tooth
meshing with the teeth of the intermediate wheel. If the user ever
wished to do the addition 999,999 + 1, it would result in a carry being
propagated right through each digit of the accumulator. This would
require enough force that it might well do damage to the gears on the
units digit. It appears that Schickard was aware of the limitations of
the strengths of his materials because he constructed machines with
only six digit accumulators even though he knew that Kepler would
likely need more figures in his astronomical work. If the numbers
became larger than six digits, he provided a set of brass rings that
could be slipped over the fingers of the operators hand in order to
remember how many times a carry had been propagated off the end
of the accumulator. A small bell was rung each time such an
"overflow" occurred, just to remind the operator to slip another ring
on his finger.

Although we know that the machine being made for Kepler was
destroyed in a fire, there is some mystery as to what happened to
Schickard’s own copy of the device. No trace of it can be found and
it is unlikely to ever be found now that complete studies of
Schickard’s papers and artifacts have been done.

The Machines of Blaise Pascal (1623-1662)

he great French mathematician and philosopher Blaise Pascal

made the next major attempt to design and construct a
calculating machine. The fact that he was not the first to construct
such a device in no way reduces the magnitude of his achievement
because his machine was entirely different from Schickard’s and it is
almost certain that Pascal would not have known of Schickard’s
machine, much less have seen it in operation.
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Figure 1.21. Blaise Pascal (1623 - 1662).

Pascal came from the area of Clermont in southern France west
of Lyon. The Pascal family was one of the noble houses of the area.
When he was only nineteen years old he managed to design the first
of his many calculating machines. He hired a group of local workmen
and, showing them his carefully done drawings, asked them if they
could make the instrument. What they produced was quite
unworkable because they were more used to constructing houses and
farm machinery than they were delicate instruments. This led Blaise
to train himself as a mechanic, even spending time at a blacksmith
shop to learn the basics of constructing metal parts. He experimented
with gears made out of ivory, wood, copper, and other materials in
an attempt to find something that could stand the strain of being used
in a machine of his design.

Although he produced about fifty different machines during his
lifetime, they were all based on the idea incorporated in his first
machine of 1642. The device was contained in a box that was small
enough to fit easily on top of a desk or small table. The upper surface
of the box, as can be seen in Figure 1.22, consisted of a number of
toothed wheels above, which were a series of small windows to show
the results. In order to add a number, say 3, to the result register, it
was only necessary to insert a small stylus into the toothed wheel at
the position marked 3 and rotate the wheel clockwise until the stylus
encountered the fixed stop, much the same way that you would dial
a telephone today. The windows through which the results were read



Early Calculation 41

actually consisted of two separate sections, with a brass slide to cover
the section not in use at the moment. The upper window was used for
normal addition and the lower window, which displayed the nines
complement (5 is the nines complement of 4 because 9 - 4 = 5) of the
number held in the result register, was used for subtraction. This
arrangement was necessary in that, due to the internal construction
of the machine, it was not possible to turn the dials backwards in order
to do a subtraction; instead one added the nines complement of the
number one wished to subtract.

Figure 1.22. The top of Pascal’s machine.

Pascal seems to have realized early on that the single tooth gear,
like that used by Schickard, would not do for a general carry
mechanism. The single tooth gear works fine if the carry is only going
to be propagated a few places but, if the carry has to be propagated
several places along the accumulator, the force needed to operate the
machine would often be of such a magnitude that it would do damage
to the delicate gear works. Pascal managed to devise a completely
new mechanism that took its motive force from falling weights rather
than from a long chain of gears.
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The entire mechanism is quite complex, but the essentials can be
seen in Figure 1.23. If the wheel marked A was connected to the units -
digit of the accumulator and the one marked B was connected to the
tens digit, then any carry would be propagated from one to the other
by the device marked W between the two shafts. Device W is a
weight that is lifted up by the two pins attached to the wheel A as it
rotates. When the wheel rotates from 9 to 0, the pins slip out of the
weight allowing it to fall and, in the process, the little spring-loaded
foot, shown in black, will kick at the pins sticking out of wheel B,
driving it around one place. This gravity assisted carry mechanism
was placed between each pair of digits in the accumulator and, when
a carry was generated through several digits, could be heard to go
"clunk," "clunk," "clunk" for each successive carry.

This carry mechanism, which would have been the pride of many
mechanical engineers one hundred years after Pascal, eliminated any
strain on the gears. However it did have the drawback that the wheels
could only turn in the one direction and this meant that it was only
possible to add and not to subtract with the machine. As mentioned
earlier, the subtraction problem was solved by simply adding the
nines complement of the required number, a process that limited the
use of the machine to those with a better than average education.

Pascal attempted to put the machine into production for his own
profit. This was not a successful venture, but it did result in a large
number of units surviving to the present day. They are all slightly
different in that they have different numbers of digits in the
accumulator or have slight differences in the internal mechanisms.
None of the surviving models functions very well, and it is doubtful
if they functioned perfectly even in Pascal’s day. The mechanism,
although ingenious, is rather delicate and prone to giving erroneous
results when not treated with the utmost care. Some of them will, for
example, generate extra carrys in certain digits of the accumulator
when they are bumped or knocked even slightly.

The Machines of Gottfried Wilhelm Leibniz (1646-1716)

ottfried Wilhelm Leibniz was born in Leipzig on July 1, 1646.
His father, a professor of moral philosophy, only lived until
Leibniz was six years old, but he and his library were a great influence
on the young Leibniz’s early education. After he obtained a doctor
of laws degree, the University of Altdorf offered him a professorship.
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Figure 1.23. The internal workings of Pascal’s machine, ihcluding
the carry mechanism.




Figure 1.24. Gottfried Wilhelm Leibniz (1646-1716).

Wanting a more active job, he refused the offer and accepted a job as
an advisor to the Elector of Mainz, one of the most famous statesmen
of his day.

While he was in service to the Elector of Mainz he traveled a great
deal to other European countries, acting as the elector’s personal
representative. During these travels he managed to meet most of the
famous men of his day. This resulted in his being made a member of
the British Royal Society and, later, a member of the French
Academy.

Exactly when Leibniz became interested in the problem of
mechanical calculation is not certain. It is known that when he heard
that Pascal had invented a mechanical adding machine he wrote to a
friend in Paris asking for details of its construction. We do not know
if Leibniz ever actually saw one of Pascal’s machines, but we do know
that, at least in his early years, he did not completely understand its
workings. In Leibniz’s notes is a series of suggestions and drawings
for an attachment to be placed on top of Pascal’s device in order to
enable it to perform multiplication. Although it was an interesting
idea, the device could not have worked because no more than one
wheel of Pascal’s machine could rotate at any given instant.
Presumably Leibniz either found this out or the pressure of other work
caused him to put the idea aside until it no longer had any relevance,
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for he never seems to have continued along this line of thought.

The machine for which Leibniz is most famous, his mechanical
multiplier, was actually lost to us for about two hundred years. Many
records exist to prove that he had actually constructed a machine, but
the actual device was not known. It appears that sometime in the
late 1670s the machine was given to A. G. Kastner at Goéttingen for
overhauling and that somehow it was stored in the attic of one of
the buildings of Gottingen University, where it remained for the
next two hundred years. In 1879 a work crew attempting to repair a
leaking roof discovered it lying in a corner. The workings of the
machine are based upon one of Leibniz’s inventions, the stepped
drum, as illustrated in Figure 1.25.

Figure 1.25. The Leibniz stepped drum mechanism.

A result wheel, shown at the end of the square shaft, could be
rotated to any of ten different positions to register the digits O to 9.
In order to add a quantity, say 8, to the result indicated on the wheel,
it was only necessary to cause the square shaft to rotate 8 steps. This
was done by having the small gear on the shaft mesh with 8 teeth on
the large drum below the shaft. The small gear could slide up and
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down the square shaft so that, depending on its position, it would
interact with a different number of teeth on the major drum. Leibniz’s
machine had eight of these mechanisms so that, when a number was
registered on the machine by setting the small pointers (which
controlled the position of the gears on the square shafts), a turn of a
crank would cause all eight stepped drums to rotate and add the digits
to the appropriate counters. To multiply a number by 5, one simply
turned the crank five times. The actual machine was constructed in
two layers so that, when one needed to multiply a number by 35 the
following steps were performed:

1. the number to be multiplied was set up by moving the gears
along the square shafts so that the pointers indicated the
desired number;

2. the crank was turned five times;

3. the top layer of the machine was shifted one decimal place to
the left; and

4. the crank turned another three times.

One of the biggest problems when attempting to design this type
of machine is how to deal with the possibility of a "carry" being
generated from one digit to the next when the first digit rotates from
the 9 position through to the 0 position. Leibniz only partially solved
this problem. Although it appears complex, the diagram of the full
mechanism is really quite simple when explained. Figure 1.26 shows
two digit positions of the machine, the stepped drums being denoted
by the digit 6. The gears in front (labeled 1, 2, and 3) are really just
part of the drive mechanism and can be ignored. The more
complicated mechanics, consisting of the levers, star wheels, cogs,
and pentagonal disks (12, 11, 10 and 14) are all part of the carry
mechanism.

When a carry was needed, the small lever 7 would interact with
the star wheel 8 and partially turn the shaft so that one of the points
of the star 1/ would assume a horizontal position (compare the two
star wheels marked 17 to note the two different positions they could
assume). This would put itinto a position in which the lever 12 (which
turns once for each turn of the addition crank) could give it a little
extra push to cause the result wheel to flip over to the next digit (i.e.,
add the carry to the next digit).

Note that this does not complete all the requirements of the carry
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Figure 1.26. The full mechanism of the Leibniz machine.

mechanism, for this carry could, in turn, cause another carry in the
next higher digit. There is no way that this simple mechanism can be
used to ripple a carry across several digits. Note the two different
positions of the pentagonal disk 74: it can have a flat surface
uppermost (which would be flush with the top cover of the machine
and, thus, not noticeable to the operator) or it could have one of its
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points projecting above the top surface. This disk is so arranged that
whenever a carry is pending, the point is up and when the carry has
actually been added into the next digit, the point is down. After
turning the crank to add a number into the register, if a ripple carry
was generated, one or more of these points would project from the
top of the machine, indicating that the need for a carry was detected
but that it had not yet been added to the appropriate digit. The operator
could reach over and give the pentagonal disk a push to cause the
carry to be registered on the next digit and the point to slide back
down into the mechanism. If that carry, in turn, caused another carry,
further pentagonal disks would push their points through the slots in
the top of the machine to warn the operator that he had to give the
machine a further assist.

We know that Leibniz started to think about the problems
involved in designing such a machine sometime about 1671. In
January of 1672 he happened to be in London and was able to
demonstrate a wooden model (which did not work properly) to the
members of the Royal Society. Leibniz promised to make some
technical changes and bring his machine back when it was properly
functional. The secretary of the Royal Society did not invite Leibniz
to the next meeting but suggested that when a proper working model
was available they would like to have it demonstrated. Several letters
remain in existence between the secretary and Leibniz concerning the
progress of the machine over the next two years.

ButLeibniz was plagued by the same types of problems that were
faced by Pascal and others—poor workmen and poor materials with
which to work. The final machine was only put together because
Leibniz had found, during his stay in Paris, a French clockmaker
named Olivier, who was both honest and a fine craftsman. No one
knows for sure, but it is assumed that Leibniz simply explained the
problems to M. Olivier and then let the clockmaker get on with the
real construction work. The final version of the machine, which is
now housed in the Landesbibliothek in Hannover, was put together
in the summer of 1674.

As previously mentioned, the machine consists of two basic
sections, the upper one contains the setup mechanism and the result
register; the lower part, the basic Leibniz stepped gear mechanism.
When the multiplicand digits have been entered into the setup slides,
the handle on the front is turned once for every time that the
multiplicand should be added to the answer dials. The large dial on
the top right of the machine has a pin to set into it at the position
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Figure 1.27. The Leibniz calculator.

indicated by the multiplier digit (e.g., 5) and, after five turns of the
front handle, it brings this pin up against the stop to be seen at the top
of the dial, preventing the operator from adding the multiplicand to
the result too many times. After a single digit of the multiplier is
processed, the crank at the far left of the machine is turned once to
shift the top section of the machine over by one digit place so that the
next digit of the multiplier can be considered. Thus, this machine was
simply the mechanical version of the common shift-and-add
procedure used for multiplication on many digital computers.

Leibniz is more widely known for his work in mathematics and
philosophy than for his invention of a calculating machine. It is
interesting to note, however, that the principle of the stepped drum
gear was the only practical solution to the problems involved in
constructing calculating machines until late in the nineteenth century.

Leibniz died on November 14, 1716, enfeebled by disease,
harassed by controversy (not the least with Newton over the invention
of calculus), and embittered by neglect. Men like him are often very
difficult to get along with and there was an almost audible sigh of
relief from his contemporaries when he finally died. An eyewitness
tells us that

he was buried more like a robber than what he really was, the ornament
of his coumry.?
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Nineteenth- and Twentieth-Century Developments

echanical calculating machines were essentially useless toys

during the first two centuries of their development. The level
of technology of the day guaranteed that any attempt to produce a
reliable, easy to use instrument was doomed to failure. The real spur
to the production of sound machines came with the increase in
commercial transactions in the early nineteenth century. It became
quite obvious that many hours were being spent in adding up long
columns of figures, and many different people attempted to modify
the older designs and create new ones in order to bring some relief to
the drudgery of the accounting house practices.

The first machine that can be said to have been a commercial
success was a modification of the Leibniz calculator created by
Charles Xavier Thomas de Colmar, a French insurance executive, in
1820. Although Thomas was not aware of the early work of Leibniz,
the internal workings of the machine rely on the same stepped drum
principle. Thomas was able to produce an efficient carry mechanism
and, in general, the machine was very well-engineered for its day
(Figure 1.28). The Thomas firm developed many different models of
the basic system and it remained in production until the start of the
twentieth century. Although it had been available to the general public

Figure 1.28. An early example of the Thomas de Colmar
Arithmometer. Rick Vargas photograph; courtesy Smithsonian
Institution.
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from the early 1820s, the early versions were not all that popular. The
expense of the machine, combined with a lack of advertising, resulted
in few sales until the machine was exhibited in the Paris Exposition
of 1867. It was so far superior to the one other calculator exhibited
that it won praise from the judges and finally became quite popular
for both business and scientific calculations.

Like any good idea, the Thomas Arithmometer resulted in the
production of many rival machines. Several different arrangements
of the Leibniz stepped drums were tried, both to avoid simply having
a carbon copy of the Arithmometer and in an attempt to reduce the
size and weight of the resulting device. One of the most successful
of these was the Edmonds Circular Scientific Calculator, which
arranged the drums and associated gearing in a circle, the drive
mechanism being a crank protruding from the top of the box.

Any real attempt at creating a smaller mechanical calculating
machine had to wait until some mechanism was developed that could
replace the Leibniz drum with a smaller and lighter device. The
purpose of the drum was to provide a mechanism for engaging a gear
with a variable number of teeth and, until late in the 1800s, no one
had managed to find a workable system to produce gears that could
quickly change the number of teeth projecting from their surface.

The true variable-toothed gear appeared in both Europe and
America at about the same time. In America Frank S. Baldwin
managed in 1873 to construct a model of a calculating machine, based
on his invention of a variable-toothed gear. He immediately applied
for a patent on the idea that, when granted in 1875, resulted in the
device becoming known as "Baldwin’s 1875 machine" (Figure 1.29).

Figure 1.29. The Baldwin 1875 machine. Courtesy Smithsonian

Institution.
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It was only three years later when Willgodt T. Odhner, a Swede
working in Russia, produced almost the exact system in Europe. This
coincidence resulted in this type of machine being referred to as a
Baldwin machine in America and an Odhner machine in Europe.
Odhner never claimed to have invented this style of machine and, in
his first American patent, he makes it quite clear that he limits his
claims to simply making several improvements in the design.

The concept of the variable-toothed gear is quite simple, as can
be seen in Figure 1.30. A cam mechanism can be rotated by means
of a lever so that as the cam contacts the different spring loaded rods
they are forced to protrude from the surface of the disk in which they
are mounted. Thus, it is possible to set the lever to the fifth position,
resulting in a gear having five teeth. When this gear is rotated, the
five teeth cause a result wheel to be turned to indicate that the number
5 has been added to whatever digit had been stored on the wheel.

Figure 1.30. The variable-toothed gear mechanism.

The disk form of the variable-toothed gear allows a number of
them to be mounted side by side on one axle to provide the arithmetic
facilities of a multidigit register in a very compact package. Many
different firms immediately started to produce machines based on this
design, one of the most famous being the German firm of Brunsviga
(Figure 1.31). The popularity of the calculator can be judged from
the records of the Brunsviga firm, which indicate that they started
production in 1892 and were able to ship their twenty thousandth
machine in 1912.
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Figure 1.31. A Brunsviga calculating machine (Dupla model). The
levers for setting the variable-toothed gears are in the central
portion of the device.

All of these machines were better suited to scientific calculations
requiring many operations on a few numbers than they were to the
problem of adding up long lists of numbers often found in business
applications. The labor of setting up a number on the machine, by
moving a slide on the Arithmometer type of machine or setting a lever
on the Brunsviga type, was slow enough that it made the devices
impractical for many commercial firms. Although various models
existed that used some form of depressible keys as the input
mechanism, these were generally not reliable enough for high-speed
operation.

It had long been realized that the action of pushing a key
contained enough energy not only to set the number on some form
of input device but also to cause the gears to rotate and effect the
addition to the result wheels. Unfortunately, no one had been able to
invent a mechanism that incorporated both actions in one device. Any
of the early attempts usually had the result wheels being turned either
too far or not far enough, depending on the force used by the operator
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in hitting the key. A young American machinist, Dorr E. Felt, found
a workable solution in the middle 1880s.

All the early attempts at producing key-driven adding machines
relied on the action of depressing a key being communicated to the
result wheel by means of a ratchet mechanism that rotated the result
wheel by an amount dependent on which key had been pushed. Not
only was it found impossible to stop the fast moving result wheel in
the proper location but any mechanism designed to carry a digit to
the next higher result wheel was always so slow in its action as to
limit drastically the speed of operation. A highly trained operator
could push keys at a rate that would only allow 1/165 of a second for
any carry to be transmitted to the next digit. This meant that any
attempt at producing a mechanism based on something as simple as
the odometer system found in modern automobiles was doomed to
failure.

Dorr E. Felt managed to invent several different mechanical
arrangements that he thought might solve most of the problems
inherent in a key-driven adding machine. Unable to afford to have
his ideas properly constructed from metal, he built his first prototype
from rubber bands, meat skewers, staples, bits of wire, and an old
macaroni box for the casing (Figure 1.32).

Felt set up a partnership with a man named Robert Tarrant in 1887
and the pair of them started producing commercial quantities of
"Comptometers.” The success of their key-driven model (Figure
1.33) was so spectacular that no other key-driven adding machine
was able to compete with it until after 1912.

One of the next major advances in the production of calculating
machines was the incorporation of special devices to automate
the operations of multiplication and division. These developments
actually took place simultaneously with the Baldwin and Odhner
inventions, but they were generally incorporated into machines based
on the older Thomas de Colmar design. In all earlier machines it was
necessary to perform multiplication by a series of repeated addition
operations. This usually required the operator to turn the machine’s
crank as many times as was represented by the sum of the digits of
the multiplier. Single-digit, or even two-digit, multipliers presented
little problem when working with the Thomas type of machine,
but multipliers of many digits resulted in both the expenditure of
considerable physical effort and the passing of long periods of time
before the answer could be obtained.

The usual mode of operation in a machine with automatic



Figure 1.32. Felt’s macaroni box model.

Figure 1.33. A production model of the comptometer.
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multiplication features required that the handle be turned only once
for each digit in the multiplier. Typical, and perhaps most popular, of
these automatically multiplying machines was the "Millionaire"
(Figure 1.34) invented by Otto Steiger of Munich in the early 1890s.
Steiger started manufacturing the Millionaire in Zurich and, because
of its speed and reliability, it was soon being sold to scientific
establishments throughout Europe and America. Its popularity lasted
until 1914, when the First World War interrupted the organization
of sales and support.

Figure 1.34. A Millionaire. Courtesy Science Museum.
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The late nineteenth and early twentieth centuries saw many other
firms start to produce calculating machines of different types. By the
start of the First World War it was possible to obtain easily machines
thatincorporated automatic mechanical multiplication devices (much
like a mechanical version of Napier’s Bones), machines that could
print their results on paper or ledger cards, machines that were driven
by both electric or spring-driven motors, and even machines having
a combination of these features. Several specialty firms even
produced machines that consisted of many calculators ganged
together in different ways in order to simplify certain special types
of calculations. Once the basic technology had been developed, only
the limit of human imagination (and the laws of physics) constrained
the different forms taken by mechanical calculators. They ranged
from desk-sized objects full of features to small examples that were
based on Swiss watch technology and capable of being held in one
hand yet able to perform all the basic arithmetical functions.

1. H. Wassen as quoted by James R. Newman, in The World of
Mathematics (New York: Simon and Schuster, 1956), 463-464.

2.InD. E. Smith, History of Mathematics, Vol. Il (New York: Dover
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